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We present a Brownian inchworm model of a self-propelled elastic dimer in the absence of an external
potential. Nonequilibrium noise together with a stretch-dependent damping form the propulsion mechanism.
Our model connects three key nonequilibrium features—position-velocity correlations, a nonzero mean inter-
nal force, and a drift velocity. Our analytical results, including striking current reversals, compare very well
with numerical simulations. The model unifies the propulsion mechanisms of DNA helicases, polar rods on a
vibrated surface, crawling keratocytes and Myosin VI. We suggest experimental realizations and tests of the
model.
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Directed motion without an imposed external gradient in a
homogeneous, isotropic environment is seen not only in liv-
ing systems �1� but also in agitated granular matter �2,3�.
Can these apparently diverse systems be understood in a uni-
fied manner? We argue here that they can, and present a
model which applies, suitably interpreted, to the movement
of helicases on DNA �4�, the directed motion of macroscopic
polar rods lying on a vertically vibrated surface �2�, the
crawling of keratocytes which contain treadmilling actin �5�
and the walking of processive motors �6� such as Myosin VI
on actin filaments �7�. While not losing sight of the applica-
tion to particular organisms or devices, our focus is on the
general principles governing propulsion by rectification of an
unbiased input active noise in a homogeneous medium.

In all the systems mentioned above, macroscopic directed
motion of the center-of-mass �c.m.� arises via a coupling to
internal coordinates, as a result of two crucial features—an
asymmetrical environment for the internal coordinates and
external energy input. Unlike in traditional “Brownian
ratchet models” �8�, the asymmetry of interest in the above
systems is internal to the motile objects, and does not lie in
an external periodic potential. Our approach is distinct from
that of �9� where the external potential plays a central role,
and also differs from the dynamical systems approach of
�10�. The present model is similar in spirit to �11,12� but
simpler, and differs in several important details as seen be-
low. We find an unexpected range of possible behaviors, es-
pecially in the dependence of the motion on the details of the
nonequilibrium noise.

Our model self-propelled object is a dimer whose two
heads are coupled by a spring, in a homogeneous, dissipa-
tive, noisy environment. The damping coefficients of the
heads depend on the relative coordinate or strain. The noise
on the particles is made of two parts – a thermal part whose
strength is determined by a fluctuation-dissipation relation

with the strain-dependent damping, and a nonequilibrium or
active part, with strength independent of the damping, which
represents the external energy input.

Our results are as follows: �i� The steady-state average of
the c.m. velocity is in general nonzero and exhibits counter-
intuitive reversals of direction as a function of the strengths
and characteristics of the drive and the dampings. �ii� The
steady state displays two other key nonequilibrium features:
the mean internal force as well as the equal-time correlation
of the relative coordinate to the c.m. velocity are both non-
zero. �iii� Active noise alone will not result in propulsion,
even in the presence of an asymmetric internal potential; the
strain-dependent damping is an essential ingredient. �iv� The
preceding perturbative analytical results are confirmed in de-
tail by numerical solution of Langevin equations.

The heads of the dimer are two point masses mi, i=1,2,
with positions xi�t� and velocities vi�t� at time t and relative
coordinate x�x1−x2 connected by a spring potential U�x�,
with a minimum at xm, and acted upon by viscous damping
and noise with a nonequilibrium component. Thus the
Langevin equations of the particles, in the Itô interpretation,
are

miv̇i + �i�x�vi = − �iU + �2�i�x�kBTfi + �Ai�i, �1�

where the overdot indicates a time-derivative, �i�� /�xi,
�i�x� are x-dependent damping coefficients, the unit-strength,
independent Gaussian white noise sources f i�t� and �i�t� en-
code thermal and nonequilibrium agitation respectively, kBT
is thermal energy, and Ai is a measure of the external energy
input. We take �i�x��0 to ensure positive dissipation. For
calculational ease we consider smooth U�x�, but our results
hold qualitatively for any confining U.

Before solving Eq. �1�, some general features are worth
noting. The noise-averaged internal velocity �ẋ�=0 in the
steady state, as long as U confines x so that such a steady
state exists. Now consider the special case where the �i are
independent of x. By inspection of Eq. �1�, we see then that
the individual velocities �vi�=0 even for a noncentrosymmet-
ric U�x�, despite the nonequilibrium noises �i, and even for
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the “two-temperature” �13� case A1 /�1�A2 /�2. Stretch-
dependent damping is crucial to produce drift of the c.m.
coordinate in this model.

For a stiff enough spring, the dimer will explore small
values of x so that �i�x�	�0+�ix where, for simplicity and
with only trivial loss of generality, we have taken the
x-independent part of the dampings on the two heads to be
equal. Averaging over the noise in Eq. �1�, we find

�vi�
��1 + �2�

=
��xU�x��

�0��1 − �2�
= −

�xvi�
2�0

. �2�

This relation connects three key quantities—mean drift ve-
locity, correlation of internal coordinate and drift velocity,
and mean internal force—each of which can be nonzero only
away from thermal equilibrium. In particular, we see that a
nonzero mean internal force �a force dipole �14�� is linked to
xvi correlations, and that either of these leads to drift if the
damping is strain-dependent. Equation �2� also elucidates the
manner in which an internal asymmetry in x leads to macro-
scopic directed motion: The drift velocity and the internal
coordinate are correlated in the presence of a nonequilibrium
driving force.

Before analyzing our model in detail we examine four
examples where internal frictional asymmetry and nonequi-
librium noise lead to directed motion.

�i� Structural studies �15� together with the findings of a
recent molecular simulation �4� of the PcrA helicase motor
on single stranded DNA are of particular interest: Its protein
domains 1A and 2A contract around adenosine triphosphate
�ATP� and catalyze its hydrolysis which then actively
stretches them apart. Stretch-dependent damping as in our
Eq. �1� is encoded in the fact that in the ATP-bound �free�
state 1A has a higher �lower� barrier to motion than 2A. The
periodic potential in �4� is centrosymmetric, and serves only
to provide the barriers that define the mobility. Holding the
relative coordinate out of equilibrium, in this case by main-
taining a disequilibrium between ATP and adenosine
diphosphate�inorganic phosphate �ADP+Pi�, results in mo-
tion in the direction of 2A.

�ii� Polar granular rods on a vertically vibrated, horizontal
plate were studied in �2�. The two ends of the rod have
different friction, so damping depends on the tilt, which is
the internal coordinate of interest. The nonequilibrium agita-
tion being uncorrelated to this frictional asymmetry, the c.m.
of the rod translates.

�iii� In the crawling of cells or cell-fragments driven by
“treadmilling actin” �5�, the relevant internal coordinate is
the instantaneous degree of polymerization, averaged over
all filaments. This quantity is maintained in a nonequilibrium
steady state by the balance between ATP-aided polymeriza-
tion at the leading edge, and passive depolymerization at the
trailing edge. This leads to more focal adhesions at the front
of the cell. The stretched cell thus detaches primarily at the
rear, resulting in net translatory motion.

�iv� In the motion of Myosin VI �7� the detachment of the
forward head is inhibited by the extension of the linker con-
necting it to the rear head. The differential binding of the
forward head depending on the extension of the linker mim-

ics our stretch-dependent damping, and ATP hydrolysis pro-
vides the energy source.

Our model thus provides a unifying understanding of four
quite distinct self-propelled systems.

To understand qualitatively how the dimer walks, con-
sider the case where the nonequilibrium noise and the
stretch-dependent damping �with a simple form interpolating
smoothly between � for x�0 and ���� for x�0� act only
on one head of the dimer, say particle 1. Let particle 2 have
a fixed damping coefficient lying between � and ��. Suppose
the active noise consists of discrete dimer-stretching events
separated by intervals whose mean 	 is much larger than the
relaxation time 	d of the dimer. Then, if noise compresses
�stretches� the dimer, particle 1 retracts faster �slower� than
particle 2, leading to translation of the c.m. in the direction
of particle 1. Suppose instead the active noise consists of a
succession of small impulses, at intervals 	�	d �effectively
white noise as in this paper�, then the dimer is kicked many
times before it can relax. Head 1, whose damping increases
with stretch, will accumulate a smaller displacement than
head 2, so that the net displacement will be in the direction
of head 2. This latter behavior is in fact what our calculations
and numerical studies find. A purely equilibrium thermal
white noise, with variance equal to 2kBT times the stretch-
dependent damping, will of course fail to produce any net
motion, because increases in the noise amplitude compensate
precisely for the enhanced damping.

Analytical expressions for the inchworm speed, the aver-
age internal force and related statistical descriptors of the
motion can be obtained in a perturbative treatment, expand-
ing the damping coefficients to leading order in x. The value
of this approach is that it elucidates the separate and essential
roles of the x-dependent damping and the nonequilibrium
noises, and shows the connection of the mean drift speed to
the mean internal force and correlations of x with the c.m.
velocity V. We choose mi=m and take a harmonic internal
potential U�x�= 1

2ax2. This simplifies considerably the pertur-
bation theory calculations that follow, without losing any of
the essential physics. We also assume that the active noise is
absent for t�0 and that at t=0, the variables x, ẋ, and V are
at equilibrium at temperature T. A formal solution for V�t�
and x�t� can be written, using the propagators from the lin-
earized version of Eq. �1�, treating all the nonlinearities as
source terms, from which we approximate the solutions to
successive orders in perturbation theory. Since we are inter-
ested in velocities and their correlations with position coor-
dinates, we find it convenient to retain inertia, particularly in
the numerical calculation, so as to avoid ambiguities in solv-
ing our stochastic differential equations �16�. Our numerical
studies are, however, entirely in the overdamped regime.

Numerical simulations were performed using an Euler-
Maruyama scheme �17�. For simplicity, we take x-dependent
damping on only one of the particles, say the particle 1,
while the other particle has a constant value of the damping
coefficient ��2=0�. Specifically, we choose �1�x�= 1

2 ���
+���+ ��−���tanh�x /w��, where w is the width over which
the strain-dependent damping changes over between the two
extreme values of � and ��. In this particular form, we have
�0= ��+��� /2 and �1= ��−��� /2w. We scale masses,
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lengths, and times by m, xm and m /�0, respectively, and use
a constant dimensionless time step of 
t=10−2. Averages are
reported over n=106 realizations of the noise. We choose
plausible values of a=0.05, kBT=0.01 based on those quoted
in �4� for the dimeric PcrA helicase and take ��+���=2 in
dimensionless units. To vary �1, we fix a value of w and
change ��−���.

The linearized version of Eq. �1�, retaining the nonequi-
librium noise, can be solved exactly. To this order, the noise
averaged steady state values of the c.m. velocity and the
internal force vanish. However, the equal time correlators
have a distinct contribution from the nonequilibrium noise.
In particular, the steady state value of the equal time cor-
relator between the internal coordinate and the c.m. velocity
is

�xV�0 =
�A1 − A2�

4��0
2 + am�

, �3�

where the subscript 0 indicates the order in perturbation
theory. Notice that �xV�0 is proportional to 
Tneq��A1

−A2� /�0, which has a precise interpretation as the difference
in the effective temperatures of the nonequilibrium noise
terms of the two heads constituting the dimer. At thermal
equilibrium, by contrast, all equal-time correlations between
x and V must vanish. The nonzero correlation �3� between x
and V leads to nonzero steady-state averages for V and x at
first order in perturbation theory through Eq. �2�. Note from
Eqs. �2� and �3� that a nonzero mean drift velocity and mean
internal force require �i�0, i.e., stretch-dependent friction,
in addition to the two-temperature scenario just described.

From Eq. �2�, we notice that since x→−x and vi→−vi is
a symmetry of the equation, �xvi� must be even in the �i. A
calculation of the equal time correlator �xV� to next order in
perturbation theory, in the overdamped approximation, yields

�xV�2 
 C0�
Tneq� + C1�
Tneq�2��1 + �2�2

+ C2�
Tneq�A��1 − �2�2 + C3�
Tneq�2��1
2 − �2

2�

+ C4A2��1
2 − �2

2� , �4�

where A=A1+A2 and the Ci are coefficients depending on a
and �0. Note from Eqs. �2� and �4� that, if 
Tneq=0=�2,
�V��−�1

3.
Remarkably, Eqs. �4� and �2� predict current reversals: �V�

is nonmonotone and can even change sign at �i�0. Why?
As argued earlier, for large �1 �taking �2=0�, with white
noise and fixed 
Tneq, V�0. However, an important compet-
ing mechanism enters on changing 
Tneq at small �1. If

Tneq�0, the second head is agitated more than the first.
The resulting transient stretch or compression affects only
the damping on the first head, leaving that on the second
head unchanged. If the noise on head 2 stretches �com-
presses� the spring, head 1 is in a state with enhanced �re-
duced� damping, so that retraction of the spring is primarily
by the movement of head 2 towards head 1 �head 1 away
from head 2� leading to a net motion in the direction of head
1 for sufficiently small �1�0 and 
Tneq�0. Thus there must
be a current reversal at some �1�0. Numerical simulation
results confirm this �Fig. 1� and the current reversals agree

reasonably with perturbation theory calculations.
With the increase in Ai, the c.m. velocity does not saturate

in our simple model. This is because the harmonic spring can
stretch indefinitely and thus the dimer can be in an infinite
number of states defined by the relative coordinate x. A real
molecular motor, on the other hand, cannot consume an in-
definite number of ATP units and thus its velocity saturates
with the increase in ATP concentration. Modifying U�x� so
that the effective range of x is limited should give rise to a
saturation of the c.m. velocity with increase in the input en-
ergy.

In the presence of an external load we find a linear rela-
tion, to lowest order in perturbation theory, between the
steady state c.m. velocity and the applied force. The reason
for a linear relation is that the applied external force does not
alter the mechanism of energy uptake in our simple model.

We also find a generalized efficiency �18� �

2m�0�V�2 /A to leading order in perturbation theory, in the
absence of an external load. With �1=0.1, �2=0 and A1
=1.0, A2=0.0, we find �
0.2%.

The results above are for the case of a harmonic spring
potential and a noncentrosymmetric �i�x�. A noncentrosym-
metric U�x� and a centrosymmetric �i�x� also yields directed
motion. Crucially, even in this case, the damping must be
x-dependent for a nonzero drift velocity. A noncentrosym-
metric U�x� alone does not lead to nonzero �V�. We have
confirmed this with an explicit numerical simulation.

A few words comparing our model to that of �11�. Al-
though the idea of stretch-dependent damping is present in
these papers, our model is much simpler in the way the sepa-
ration of equilibrium and nonequilibrium forces are pre-
sented. In �11�, stretch dependent damping is induced by
activity whereas in our model it is present even in the ab-
sence of the nonequilibrium driving noise. It does not lead to
directed motion because the strength of the equilibrium noise
exactly balances the dissipation according to the fluctuation-
dissipation theorem. Directed motion is induced by the active
noise whose strength is independent of the �i�x�. Also in our
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FIG. 1. �Color online� c.m. velocity as a function of the stretch
dependent damping coefficient �1 for various 
Tneq with �2=0 and
w=4.0. 
Tneq was changed by fixing the value of A1=1.0 and vary-
ing A2. The solid lines are the corresponding perturbation theory
calculations from Eq. �4�.
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model, Eq. �2� explicitly clarifies the manner in which asym-
metry in an internal degree of freedom is coupled to a mac-
roscopic coordinate in the presence of nonequilibrium noise,
and leads to directed motion. That this is also proportional to
a nonzero average internal force highlights the nonequilib-
rium nature of the phenomenon.

A likely realization of this model is �19� in the form of a
colloidal bead with a polymer tail. The damping on the c.m.
of the polymer will depend significantly on its stretch, while
that on the bead will not. Subjecting this composite colloid to
nonequilibrium noise �chemical reactions, catalysis at its sur-
face �20�, fluctuating laser interference patterns� should
cause it to drift in the direction of its instantaneous orienta-
tion. One-dimensional versions could be constructed using
optical tweezers in a line trap geometry. This system could
serve to test our theory.

Tests should focus on Eq. �2� as well as the phenomenon
of current reversal �Fig. 1�. In our model the dampings and
their x dependences are properties intrinsic to the dimer in

the absence of active noise. Changing the strength of the
active noise should change the numerators in Eq. �2�, leaving
the denominators unchanged, thus allowing a test of the two
equalities in Eq. �2�. Current reversals �Fig. 1� are best
probed by altering the active noise levels on each head of the
dimer.

Several natural generalizations of our model suggest
themselves, and will be investigated in the near future. These
include Poisson or other active noises, dimers moving in
more than one dimension, coupled arrays or an elastic con-
tinuum of active particles �21�, and coupling to hydrody-
namic flow.
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